

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 5565–5568

Enantioselective Mannich-type reaction of sulfonylimines having 2-pyridylsulfonyl group as a novel stereocontroller

Shuichi Nakamura,* Hideaki Sano, Hiroki Nakashima, Koji Kubo, Norio Shibata and Takeshi Toru*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

> Received 12 April 2007; revised 16 May 2007; accepted 18 May 2007 Available online 25 May 2007

Abstract—A catalytic enantioselective Mannich-type reaction of $N-(2$ -pyridylsulfonyl)imines in the presence of chiral bis(oxazoline)s afforded the products with high enantioselectivity. Asymmetric induction was supposed to be efficiently controlled by a new chiral center on the sulfur dynamically induced through the discriminative coordination of a chiral Lewis acid to one of the sulfonyl oxygens.

© 2007 Elsevier Ltd. All rights reserved.

b-Amino acid derivatives have proven utility as building blocks for the preparation of pharmaceutical targets, $¹$ $¹$ $¹$ </sup> natural products, 2° 2° and peptidic materials with unique structural properties.[3](#page-2-0) The enantioselective Mannichtype reaction, addition of ester enolate equivalents to imines, is one of the most important methods for the synthesis of optically active β -amino acids,^{[4](#page-2-0)} although various diastereoselective approaches to Mannich-type reactions have been reported for the synthesis of β -amino acids. Recently, catalytic enantioselective reactions have been developed, $4,5$ however, only a few studies have been reported on the catalytic enantioselective Mannich-type reaction of non-activated N-sulfonyl-imines.^{[6](#page-2-0)} Although the N-sulfonyl group is one of the well studied imino protecting group because it certainly enhances the reactivity of the imino group, deprotection of the p-tolylsulfonyl group has some problem under mild conditions. We reported chiral induction in radical reactions of benzimidazolyl or 2-pyridyl vinyl sulfones, where we first proposed the discriminative coordination of a chiral Lewis acid between one of the prochiral sulfonyl oxygens and the heteroaryl nitrogen playing a key role in inducing enantioselectivity.[7](#page-2-0) Namely, a new chiral sulfur center is dynamically induced by a chiral relay process[8](#page-2-0) in these reactions. We have proven this type of new chiral induction in enantioselective Grignard and

Strecker reactions of N-(2-pyridyl)sulfonylimines, showing the 2-pyridylsulfonyl group as a new type of the acti-vating group of the imino group and a stereocontroller.^{[9](#page-3-0)} Carretero and co-workers have reported excellent enan-tioselective conjugate addition,^{[10](#page-3-0)} conjugate reduction,^{[11](#page-3-0)} 1,3-dipolar cycloaddition^{[12](#page-3-0)} and aza Diels-Alder reac-tion of 2-pyridylsulfonyl substrates^{[13](#page-3-0)} and, very recently, they disclosed the Mannich-type reaction of N-(2-thienyl)sulfonylimines using a chiral Lewis acid developed by them.[14](#page-3-0) Herein we report a catalytic enantioselective Mannich-type reaction of $N-(2-pyridylsulfonyljimines$ using commercially available bis(oxazoline) ligands ([Fig. 1](#page-1-0)).

We examined the enantioselective Mannich-type reaction of various arylsulfonylimines 1a–f using a catalytic amount (10 mol %) of chiral Lewis acids prepared from various bis(oxazoline)s and Lewis acids. The results are shown in [Table 1.](#page-1-0) The reaction of N-tosylimines 1a with $Cu(OTf)₂/Box-Ph$ 3 did not give the product, whereas N-(2-pyridylsulfonyl)imines 1b afforded product 2b with good enantioselectivity (entries 1 and 2). It is noteworthy that only N-(2-pyridyl)sulfonylimine 1b showed good enantioselectivity among N-(heteroaryl)sulfonylimines 1b–f (entries 3–6). Other chiral Lewis acids derived from CuOTf, $Mg(OTf)_2$, and $Zn(OTf)_2$ with 3 afforded product 2b with lower enantioselectivity than $Cu(OTf)₂/3$ (entries 7–9).^{[15](#page-3-0)} The chiral Lewis acid derived from other Box ligands such as Box-t-Bu 4, indaBox 5, and PyBox 6 also catalyzed the reaction

^{*} Corresponding authors. Tel./fax: +81 52 735 5217 (T.T.); e-mail addresses: snakamur@nitech.ac.jp; toru@nitech.ac.jp

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.05.127

Figure 1. Enantioselective Mannich-type reaction using 2-pyridylsulfonyl group as a stereocontroller.

Table 1. Enantioselective Mannich-type reaction of imines 1a–f in the presence of various chiral Lewis acids (0.1 equiv)

a ee Was determined by the HPLC analysis using Chiralcel OD-H or Chiralpak AD-H.

b ee Obtained after single recrystallization from acetone is shown in parenthesis.

^c Catalyst loading is 30 mol %.

but with lower enantioselectivity than that with $Cu(OTf)₂/3$ (entries 10–13).

The reaction of various $N-(2-pyridylsulfonyljimines$ 1g–m using $Cu(OTf)/3$ gave products in moderate yield with good enantioselectivity $2g$ –m [\(Table 2,](#page-2-0) entries 1– 7).[16](#page-3-0) Furthermore, enantiomerically pure sulfonamides were easily obtainable by recrystallization. Thus, single recrystallization of sulfonamides 2b,g–m from acetone afforded almost enantiomerically pure (R) -2b,g–m.

To realize the synthetic potential of this stereoselective preparation of chiral β -amino acids, we confirmed the easy removal of the 2-pyridylsulfonyl group. Although removal of arylsulfonyl groups generally needs drastic reaction conditions, the 2-pyridylsulfonyl group could be removed from the optically active (R) -2b on treatment with magnesium in MeOH at $0^{\circ}C^{17}$ $0^{\circ}C^{17}$ $0^{\circ}C^{17}$ and the chiral amine (R) -7 was found to be formed without significant loss of optical purity ([Scheme 1](#page-2-0)). The absolute configuration was determined by comparing the specific rota-tion of 7 with that of the literature data.^{[18](#page-3-0)}

The enantioselective Mannich-type reaction of N-(2-pyridylsulfonyl)imines 1b,g–m gave the products in moderate yield with good enantioselectivity, whereas the reaction of N-(p-tolylsulfonyl)imine 1a did not afford the products. These results show that the 2-pyridylsulfonyl group acts not only as an efficient stereocontroller but also as an activating group. The Cu(II) Lewis acid would form a distorted square-planar bidentate-coordinating complex¹⁹ with 1b and 3. We assumed, by model study, the most stable complex would be the one shown in [Figure 2](#page-2-0), where one of the sulfonyl oxygens, a pro-R sulfonyl oxygen, is preferably coordinated to Cu(II) together with two Box nitrogens and one pyridyl nitrogen; the complex coordinated to a pro-S sulfonyl oxygen apparently has a strong interaction between the phenyl groups. The chiral relay on the sulfur thus formed allows the silyl ketene acetal to approach the Si-face of the imine, avoiding the interaction with the phenyl group in Box-Ph 3, and (R) -2 is preferably formed.

In conclusion, the enantioselective Mannich-type reaction of N-(2-pyridylsulfonyl)imines in the presence of Table 2. Enantioselective Mannich-type reaction of various imines 1g–m in the presence of $3/Cu(OTf)_2$ (0.1 equiv)

a ee Was determined by the HPLC analysis using Chiralcel OD-H or Chiralpak AD-H.

- ^b ee Obtained after single recrystallization from acetone is shown in parenthesis.
- ^c The absolute configuration of the product is determined to be *R*. ^d Catalyst loading is 30 mol %.
-

Scheme 1.

Figure 2. Presumed reaction model of 1b-Cu(OTf) $\frac{1}{2}$.

bis(oxazoline)s afforded chiral sulfonamides with good enantioselectivity. The 2-pyridylsulfonyl group works not only as an activating group of the imino group in the reaction with the silyl ketene acetal but also as a stereocontroller which shows excellent enantioselectivity through dynamically controlled chirality on the sulfur atom.

Acknowledgments

This work was supported by the Daiko Foundation, Yazaki Foundation and Sankyo Award in Synthetic Organic Chemistry, Japan.

References and notes

- 1. Enantioselective Synthesis of β -Amino Acids; Juaristi, E., Soloshonok, V. A., Eds.; Wiley-VCH: New York, 2005.
- 2. Kleinmann, E. F. In Comprehensive Organic Synthesis; Trost, B. M., Flemming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2, Chapter 4.1.
- 3. (a) Hintermann, T.; Seebach, D. Chimia 1997, 50, 244; (b) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015; (c) Koert, U. Angew. Chem., Int. Ed. 1997, 36, 1836– 1837; (d) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
- 4. For reviews on the asymmetric Mannich reaction, see: (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069; (b) Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org. Chem. 2000, 4, 563; (c) Córdova, A. Acc. Chem. Res. 2004, 37, 102; (d) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541; (e) Ueno, M.; Kobayashi, S. In Enantioselective Synthesis of β -Amino Acids; Juaristi, E., Soloshonok, V. A., Eds.; Wiley-VCH: New York, 2005; Chapter 6; (f) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis; Wiley-VCH: New York, 2005, Chapter 5.2, pp 97–108.
- 5. For recent reports on the catalytic asymmetric Mannich reaction in the synthesis of β -amino acid derivatives, see: (a) Josephsohn, N. S.; Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Org. Lett. 2005, 7, 2711; (b) Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005, 44, 2; (c) Kobayashi, S.; Arai, K.; Shimizu, H.; Ihori, Y.; Ishitani, H.; Yamashita, Y. Angew. Chem., Int. Ed. 2005, 44, 761; Reaction with β -ketoesters, see: (d) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256; (e) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525; For recent reports using organocatalyst, see: (f) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964; (g) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566; (h) Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4564; (i) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. Adv. Synth. Catal. 2005, 347, 1523; (j) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048; (k) Song, J.; Shih, H.; Deng, L. Org. Lett. 2007, 9, 603.
- 6. For enantioselective reactions of highly electronically activated a-tosyliminoesters, see: (a) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10; (b) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548; (c) Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995; (d) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67; (e) Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. **2003**, 9, 2359; For enantioselective reactions of simple α sulfonylimines with chelated nucleophiles, see: (f) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583; (g) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365.
- 7. (a) Sugimoto, H.; Nakamura, S.; Watanabe, Y.; Toru, T. Tetrahedron: Asymmetry 2003, 14, 3045; (b) Sugimoto, H.; Kobayashi, K.; Nakamura, S.; Toru, T. Tetrahedron Lett. 2004, 45, 4213; (c) Watanabe, Y.; Mase, N.; Furue, R.; Toru, T. Tetrahedron Lett. 2001, 42, 2981.
- 8. For a recent review on chiral relay effect, see: (a) Corminboeuf, O.; Quaranta, L.; Renaud, P.; Liu, M.; Jasperse, C. P.; Sibi, M. P. Chem. Eur. J. 2003, 9, 28; For a recent contribution, see: (b) Sibi, M. P.; Stanley, L. M.;

Nie, X.; Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 2007, 129, 395.

- 9. (a) Sugimoto, H.; Nakamura, S.; Hattori, M.; Ozeki, S.; Shibata, N.; Toru, T. Tetrahedron Lett. 2005, 46, 8941; (b) Nakamura, S.; Nakashima, H.; Sugimoto, H.; Shibata, N.; Toru, T. Tetrahedron Lett. 2006, 47, 7599; (c) Nakamura, S.; Sato, N.; Sugimoto, M.; Toru, T. Tetrahedron: Asymmetry 2004, 15, 1513.
- 10. (a) Mauleón, P.; Carretero, J. C. Chem. Commun. 2005, 4961; (b) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Org. Chem. 2005, 70, 7451.
- 11. Llamas, T.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2007, 46, 3329.
- 12. Llamas, T.; Arrayás, R. G.; Carretero, J. C. Org. Lett. 2006, 8, 1795.
- 13. Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 1480.
- 14. González, A. S.; Arrayás, R. G.; Carretero, J. C. Org. Lett. 2006, 8, 2977.
- 15. The reactions in other solvents or other copper (II) salts did not improve the enantioselectivity.
- 16. Various N -sulfonylimines were prepared from sulfonamides and aldehydes using TiCl₄ as a Lewis acid according to the literature: Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561. Aliphatic 2-pyridylsulfonylimines, however, could not be obtained from aliphatic aldehydes under various reaction conditions.
- 17. (a) Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. J. Org. Chem. 1995, 60, 5969; (b) Pak, C. S.; Lim, D. S. Synth. Commun. 2001, 31, 2209.
- 18. Kunz, H.; Schanzenbach, D. Angew. Chem., Int. Ed. Engl. 1989, 28, 1068.
- 19. Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.